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Incremental Length Diffraction 
Coefficients for the Shadow Boundary 

of a General Cylinder 

1    Introduction 
In the physical theory of diffraction (PTD) [1], the scattered field is divided into a physical 
optics (PO) field and a nonuniform (NU) field. The PO field for perfectly electrically conducting 
(PEC) objects is obtained from an integration of the PO current over the object. One reason for 
the limited accuracy of the PO field is that the PO current fails to closely approximate the exact 
current in the vicinity of shadow boundaries and on the shadow side. A significant improvement 
in the accuracy of the computed fields can therefore be obtained by finding good approximations 
for the fields radiated by the NU currents near the shadow boundary. Approximations for these 
NU fields can be obtained by first integrating the product of the free-space Green's function and 
the approximated NU currents excited on a strip of differential width transverse to the shadow 
boundary of a canonical two-dimensional (2D) scatterer that closely conforms locally to the shape 
of the actual scatterer in the vicinity of the shadow boundary. The differential fields obtained 
by this integration are known as the incremental length diffraction coefficients (ILDC's). Once 
the ILDC's are determined, the NU fields are obtained by integrating them along the shadow 

boundary of the actual scatterer. 
Although for some time ILDC's have been available for the shadow boundaries of two- 

dimensional (2D) PEC scatterers with sharp edges such as the wedge [2], [3], [4], [5] it is only 
recently that they have been obtained for convex, smoothly-curved cylinders. Hansen and Shore 
obtained ILDC's for the shadow boundary of a circular cylinder [6] and a parabolic cylinder [7] 
using an earlier form of the method of this report, and presented the basic ideas of this report in 
[8]. Yaghjian et al. [9] obtained shadow-boundary ILDC's for a convex cylinder by approximat- 
ing the far fields radiated by the NU shadow-boundary currents of a convex cylinder by the far 
fields radiated by the NU shadow-boundary currents of circular cylinders, and then substituting 
the approximated fields into general expressions [5], [9], [10].  These approximate ILDC's were 
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then modified to account for a varying radius of curvature in the shadow region. 
The purpose of this report is to show how ILDC's can be obtained for the NU currents near 

the shadow boundaries of PEC 2D convex cylinders of general cross-section and smoothly varying 
radius of curvature, by approximating and integrating the NU currents. We derive asymptotic 
expressions for the ILDC's that are rapidly calculable and usable in general-purpose computer 
codes. This method of obtaining convex-cylinder shadow-boundary ILDC's is an alternative to 
the field substitution of Yaghjian et ah [9] described above. The field substitution method, 
because it works directly with fields, is perhaps simpler than the method of this report. For 
applications in which heightened accuracy is important, however, the NU current approximation 
and integration method described here may be preferable because it yields more accurate ILDC's 
than does the field substitution method [11]. 

The report is organized as follows. In Section 2 we obtain the Fock approximations of the 
NU currents on a convex cylinder. These approximations are validated by specializing them 
to the cases of a circular and parabolic cylinder and showing that the Fock approximations to 
the NU currents closely match the exact NU currents. In Section 3 we show how the ILDC's 
corresponding to the Fock current approximations of Section 2 can be obtained efficiently by 
using an accurate and rapidly calculable approximation to the integral defining the ILDC. In 
Section 4 we show how to determine the canonical 2D cylinders from the actual 3D scatterers. 
As an example of obtaining and using shadow boundary ILDC's we show results obtained for 
the field scattered by a PEC sphere illuminated by a plane wave. 

2    Fock Currents on a Convex Cylinder 

We now derive simple expressions for the Fock currents [12] on a convex perfectly conducting 
cylinder illuminated by an obliquely incident plane wave (see Figure 1). These expressions 
are determined by applying the procedure in [13] to the Fock currents that are valid for normal 
incidence. The Fock currents for normal incidence are determined from expressions in [14]. Some 
of the results derived in this section are available in the literature, for example [15], [16, pp.83- 
86], and [14]. We note, however, that the Fock currents for oblique incidence in the illuminated 
region are given incorrectly in [15] and [14], and are not given in [16], and there are other errors 
as well. In the following derivations of the Fock current approximations, the cylinder axis is 
parallel to z, and the unit normal vector for the cylinder is denoted n. pn denotes the radius 
of curvature of the curve that describes the cylinder cross-section in a plane perpendicular to z, 
and it is assumed that pn is a continuous function. The incident plane wave propagates in the 
direction k*. An e~lu,t time dependence is assumed throughout with u > 0. 

2.1     The Fock Current for TE Oblique Incidence 

In this case the incident electric and magnetic plane-wave fields are given by 

ETE>i(r) = -Zo4>iei** (1) 



Shadow Boundary 

Figure 1: Cross section of a convex cylinder with smoothly varying radius of curvature. 

and 
HTi^(r) =-0Vk'-r (2) 

where Z0 is the impedance of free space, k' = kk\ and k' = -x sin 9% cos ft-y sin 9* sin ft-z cos 0l 

is the propagation direction of the incident plane wave. Moreover, 6 and cf> are the spherical 
unit vectors corresponding to the direction {9\ ft). We let r = x± + yy + zz denote a general 
point and let r0 = xx + yy denote a point in the plane z = 0. 

In the special case of normal incidence (0* =^ 90°) all fields are independent of z and the 
direction of propagation of the incident field is k! = k2,n = -xcos^ — ysin^1, so that the 
incident magnetic field is given by HrB,,',n(r0) = zeik*'n-r°. The Fock current in the illuminated 
region can be written as [14, p.1666] 

Kr^(r0)=nxHT£;'i'n(ro)G'| kpn{ro) 
1/3 

n • k''n (3) 

where G(x) = eixA/3g(x), with g(x) being the Fock function defined in [17, pp. 63-64]. These Fock 
functions (as well as f(x) and F(x) defined below) are most easily obtained by interpolation of 
tabulated values for |xj < 3, and by use of asymptotic expressions for |x| > 3. Note that 
n x HTE'i'n(r0) — tnetk''n'r°, where tn is the tangent unit vector that is perpendicular to z and 
satisfies tn = n x z. Since n x HTB'i'n(r0) is simply one half of the PO current at the point r0, 
the Fock current (3) can also be written as 

I<lE'n(ro) KlE>PO<n{v0)G\ 
kpn{r0) 

1/3 

nk .1,71 (4) 



Equation (4), valid for normal incidence, will now be used in conjunction with the procedure 
in [13] to obtain the Fock current for oblique incidence. According to [13, Eq.(13)], for oblique 
incidence the current can be expressed as 

Äicos 0l    d 
K^(r)= Ksinfl' + z——- ikz cos 9' 

ks'm9i dtn 

rTE,n Ktn    (r0) 
k—*k sin 9' (5) 

where   Ktn 'n(r0) .    . indicates that k must be replaced by ksm9l in the expression for 

K£ (r0). In [13] it is also shown that applying (5) to the PO current for normal incidence 
yields the PO current for oblique incidence. Thus, by applying (5) to (4) we obtain the following 
expression for the Fock current for oblique incidence 

■KTE{r) = \KTE>P0{v) G 
kpn(r0) 

1/3 

n • kl'n 

J k—>ks'm9' 

JCOs9i    c_ikzcosgi 

2k sin 6{ 
d <£'P°'n(ro)^G| kpn(ro) 

-,1/3 

n • kjn 
(6) 

k—*k sir 

where KTE'p°(r) = 2 n x HTE'z(r) is the PO current for oblique incidence. Using the relation 
ö|-n • k1'" = k*'n • tn//9n, one finds that for large kpn the second term of (6) is negligible compared 

to the first term of (6). Since sinO1 n - kz'n = n • k1, we find that 

'kpn(r0) 
1/3 

n • k2'" 
'kpg(r)' 

1/3 

nk2 

where 

J k-*ksint 

PÄr) - dn^ 

(7) 

(8) 

is the radius of curvature of the geodesic that forms the angle 6* with the z axis. Consequently, 
in the illuminated region, the Fock current for oblique incidence is given by 

TE,-> KJi(r) = nxHJ»G 
kPg{v) 

1/3 

nkJ 
(9) 

The total current approximated in (9) is the sum of the PO current and the nonuniform (NU) 
current. By defining the modified Fock function 

G{x) = G{x) - 2 (10) 

and using G instead of G in (9) we obtain the Fock current approximation for the TE NU current 
in the illuminated region 

KTE'NU(r) = nxHTE>i(r)G\ 
kpg{r) 1/3 

nkz 
(11) 



Since n • kz = 0 everywhere on the shadow boundary, the Fock current at the point rsb on the 
shadow boundary is 

KTE(vsb) = hsb x Hr^(rs6)G(0). (12) 

The asymptotic formula 

G(x) = 2 + ^ + 0(x-%     s^-oo (13) 

shows that in the illuminated region far from the shadow boundary the Fock current is 

K»(r> = 2 , x H-(r) + .£|| + 0 (,^(r)]:(fi,fc,)6) ■ («) 

In (14) the first term is the PO current and the second term is the first higher-order optics term. 
Now consider the Fock current on the shadow side of the cylinder. For normal incidence the 

formulas of [14, p. 1666] show that the Fock current is 

K^"(r0) = Y0nsb ■ ETE^(rsb0) e
iks^g(xn) (^^)     k (15) 

where rs60 is the point of the shadow boundary that lies in the z = 0 plane, Y0 = 1/Z0 is the 
admittance of free space, hsb is the normal at the shadow boundary, sn(r0) is the distance along 
the cylinder from the point rsb0 on the shadow boundary to the point r0, and 

Iv L„ sra5^' (16) Xr 

is the Fock parameter (the integration in (16) is on the surface of the cylinder). Moreover, tn is 
that unit tangent vector to the cylinder which is perpendicular to z and is equal to k*'n at the 
shadow boundary. On the illuminated side the unit tangent vector was defined as tn = n x z, 
and the two unit tangent vectors on either side of the shadow boundary are therefore not always 
equal at the shadow boundary (in some cases they are opposite). However, the unit tangent 
vector in the illuminated region was used only in intermediate steps of the derivation, and it 
does not appear in any of the final formulas for the current in the illuminated region. Note also 
that Y0 nsb • ETE'i'n(rsb0) = ±esk''n"rs60 since the incident electric field is always parallel to the 
normal at the shadow boundary. 

To obtain the Fock current for oblique incidence, we insert (15) into (5) and note that (5) 
remains unchanged when t„ is reversed. It is found that for large kpn, the terms involving the 
derivative of g(xn) or the derivative of [p„(ra60)/?„(r0)]1/6 are negligible compared to the two 
other terms that result when (15) is inserted into (5). Thus, we have 

K-(r)=yo(--q^,E»'(r!41_^(,(tM),/6
S(W^,0 

f t„ sin ¥ e>*™>'*-<'°) + i^t  Oe**»'-.to)) .        (17) 



The last factor in (17) simply equals (tnsin0» - zcos0,')e,'fcsin',"*n(Po) = tge
iksineisn(-ro\ where ig 

is the tangent along the geodesic that forms the angle 6% with the z axis, as shown in Figure 1. 
By unrolling the cylinder one finds that sin^5n(r0) - cos0l'(z - zsb) = sG(r), where sg(r) is the 
distance along the geodesic from the point rsb = xsbS: + ysby + zsbz on the shadow boundary to 
the point r in the shadow region. Thus, 

—ikzcosß' eiksn{r0) e*k; 

showing that 

'&* ■ ETSAn(r*o)l        _ = nsb ■ E^(rs6)e^«. (19) —ikz cos 9'    ik sin 6'sn(To) 

From the relation (8) between pn and pg and the formula dsn = sm 9{dsg we find that [xn]k_+ksinei 
simply equals 

1/3   -      dsn 
Xn (in P9(s9)

2/3 (20) 

where the integration is performed along the geodesic that starts at rsb and ends at the point 
r in the shadow region. Inserting all these results into (17) proves that the Fock current in the 
shadow region is given by 

1/6 

Kr*(r) = Y0 nsb - Er£'(rs6) e
iks^g(xg) (^J4)     t W) t3 (21) 

when the incident field is the plane wave in (1) and (2). 
At the shadow boundary the expression in (21) reduces to 

Kr£(rs6) = Y0hsb • Er^'(rs6) g(0) V (22) 

which can be shown to be in agreement with (12) by use of #(0) = G(0), <f> = nsb or cj> — —nsb, 
and tJ?s6 = k\ For large positive values of its argument the Fock function g(x) is given by [17, 
p. 64] 

e/?ixe5«'r/6 

^)~Mi(=Ä)'       "+0°' (23) 

where & is the negative of the first zero of the derivative of the Airy function. Substituting (23) 
into (21) gives us the first creeping wave on the convex cylinder 

Kr*(r) ~ Y0 nsb • E^M e*'.(r) f'^   (^] ^ l9. (24) 



2.2    The Fock Current for TM Oblique Incidence 

In this case the incident electric and magnetic plane-wave fields are given by 

E™'i(r) = -öieik*-r (25) 

and 
H™''(r) = ro^eik',r (26) 

where Y0 is the impedance of free space. For normal incidence the electric field in (25) is given by 
'E™'i'n(r0) = zetk''n'r°, and [14, p. 1666] shows that the Fock approximation to the total current 
on the illuminated side of the cylinder is 

K™'n(r0) =iY0z- E™^(r0) F[ 
kpn(*o) 

1/3 

n • kz'n kpn(r0) 
1-1/3 

(27) 

where F(x) = e'xi^3f(x) and f(x) is the Fock function defined in [17, pp. 63-64]. Since the PO 
current for normal incidence is 

K™'po'"(r0) = 2 n x H™^n(r0) = -2Y0n ■ k^ e^1"*0 z 

we can write the Fock current (27) as 

KrM'"(r0)   =   zK™>n{r0) 

(28) 

^KTM,PO,n(ro)i,| kpn(r0) 
1/3 

n • k'n kpn(r0) 
-,1/3 -1 

n • kl>       . (29) 

According to [13] the current for oblique incidence can be determined from the current for 
normal incidence through the equation 

K™{v) = e-^cose' \K™'n(r0) 
k-+ksin9' 

(30) 

and in [13] it is also shown that applying (30) to the PO current for normal incidence yields the 
PO current for oblique incidence. Inserting the Fock current (29) into (30) shows that the Fock 
current for oblique incidence is 

K™(r) = ZK™(T) = - i n x H™'*(r) F ( (^A ^nk 
kpg{r) 

1/3 

nkl (31) 

where we have used (7) and inserted the expression KrM'po(r) = 2 n x H™-i(r) for the PO 
current. Alternatively, we can insert the Fock current (27) into (30) to get 

rt^^^w^ sm 2 0. 
kp9{r) 

-,1/3 

n-k' 
kPS(

r) 
-1/3 

(32) 



where we have used the formula 

_—ikz cos 0l 

z • E™^(r0) 
z • ErM-''(r) 

Ik-ths'inO' sin 0*' 
(33) 

Since the total current approximated in (31) or (32) is the sum of the PO current and the 
NU current, by defining the modified Fock function 

F(x) = F(x) - 2ix (34) 

and using F instead of F in (31) or (32) we obtain the Fock current approximation for the TM 
NU current in the illuminated region 

KTM,NU{r)     =    iKTM,NU{r) 

=   -inxB™'\r)F\ 
kPg{r) 

1/3 

nkl kpg{r) I 1/3 -l 

or 

K TM,NU W 
iYo 

sin2 0' 
z-E™'i{r)F\ 

kpg(r) 
1/3 

nk* 
kPg(r) 

n-k' 

-1/3 

(35) 

(36) 

At a point rsb on the shadow boundary both n • k* and n x H™'1 equal zero, and we find 
that 

n x H™-i(r) Y0 eik'-r^ A nsb ■ H™'^) A z = —■ z,      r —>• rsb 
n-k« sin0' ns6-^sin0i 

so that the Fock current (31) at the shadow boundary becomes 

(37) 

TM, K'M(rsb) = zK'2
M(rsb) = z 

. iF(0) nsb ■ H™'(r,6)   /^(r^ 
-1/3 

ns{, • <£ sin 02 
(38) 

which is seen from the plane-wave expressions (25) and (26) to agree with the result obtained 
from (32). 

For large negative values of its argument, the function F(x) is given by [17, p. 64] 

F(x) ~ 2ix + —T + 0(aT5),     x-»-oo, 
lxL 

so that the current in the illuminated region away from the shadow boundary is 

K™(r) ~ 2 n x H™-''(r) - i * X "f*'^ +0( l 

kpg(v)(n-\?y       \(kPgy(n.tey, 

(39) 

(40) 

in which the first term is the PO current and the second term is the first higher-order optics 
term. 

8 



On the shadow side of the cylinder, the Fock approximation for normal incidence to the total 
current is [14, p. 1666] 

KTM,n{ro) = ,/(age^(ro) n,6-H^(^o) (Pj^)1/6 r^o)V1/3 

nsb-<f> Pn(ro) 
(41) 

where the Fock parameter xn is defined in (16). Inserting (41) into (30), and using (18), we find 
that the Fock current for oblique incidence is 

Aj-(r) = i/(..y.« ^T''^ (^ff)le (*& 
hsb-<p sinfl1    V PAr) )      \    l 

with xg given by (20). 
At the shadow boundary, the value of the Fock current (42) is 

-1/3 

(42) 

Ki"{r.h) = if{0) 
nsb • H™-'(ri6) fkPg(rsby 

nsb ■ <j> sin el    \      2 

-1/3 

(43) 

which agrees with the result in (38) because /(0) = -F(O).    For large positive values of its 
argument, the Fock function f(x) is given by [17, p. 64] 

e-in/3 eaixe5i*/6 

(44) 

where ax is the negative of the first zero of the Airy function. Substituting (44) into (42) gives 
the first creeping wave on the convex cylinder 

KTM{r) „ { e-^e^°**y*:W nsb - H™^) f,,(r.t^
1/6 (kPa(r)} "1/3 _        ^ 

Ai'(-ai) hsb ■^sin9i    V Pg(T) 

2.3    Examples 

We now specialize the Fock current approximations for a general convex PEC cylinder obtained 
above to the cases of a circular and parabolic cylinder. Consider first a circular cylinder of radius 
a illuminated by the TE plane wave given by (1) and (2). For the Fock current approximation 
to the TE NU current in the illuminated region we obtain from (11) 

KTE>NU{a, </>, z) « [-<£ sin 0' + z cos 0* sin(^ - ^') —ika sin 9l cos((f>— (f>1)     —ikzcosß* 

■G 
ka sin 0 t\l/3 

cos(cj) — (f>1) |^-^'|<TT/2     (46) 
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Figure 2: Amplitude of K^'J u(a,<f>,z) for circular cylinder, ka = 60, ft = 180°, Q{ = 90° 

while for the shadow region (21) yields 

KTE(a, (f>, z) « [-<£ sin 0{ ± z cos 0{]  ^^1^/2- -—ihz 

■9 
ka sin 9% 1/3 

|f±*/2-*| 7T/2 <  \<f> - ft\ < TT (47) 

where the ± corresponds to the shadow boundary at ft ± 7r/2, respectively. For illumination by 
the TM plane wave given by (25) and (26), for the illuminated region we obtain from (35) 

K™'NU(a,ftz) « izY0 e-«*«"^«»(*-*•') e-^cosS' 

„V/3 
(|A;asm0M     cos(<?5> — <£') 

,1/3 (ifcasin^y 
\<t>-ft\<*/2       (48) 

while for the shadow region (42) yields 

K™{a,ftz) « jy0 e^
sinei^±^2-' —ikz cos 6' 

f 
,!/3 

(ifcasinfl1)      |^'±7r/2-^| 

|&asin0M 
1/3 

7f/2<   |^-^|  <7T. (49) 

In Figure 2 we have plotted the amplitude of the approximate TE NU current, 
KQ ' (a, <f>, z), for a circular cylinder with ka = 60 obtained from (46) and (47) with ft = 180° 
and 6l = 90° (normal incidence) along with the amplitude of the exact current obtained from the 
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Figure 3: Amplitude of I<JE'NU(a,<ß,z) for a circular cylinder, ka = 60, ft = 180°, 0*' 30°. 

eigenfunction expansion for scattering from a circular cylinder. The amplitude is discontinuous 
at the shadow boundary at <f> = 90° because the TE PO current is discontinuous there, and 
hence when subtracted from the continuous total current gives a discontinuous NU current. The 
approximate current is seen to closely fit the exact current except for the ripple behavior of the 
exact current in the deep shadow region in the vicinity of <j> = 0°. This ripple behavior is the 
result of interference between the dominant creeping waves launched at </> = ±90° both of which 
are present in the exact eigenfunction expansion of the current, whereas the approximate current 
in the range 0° < <f) < 180° contains only the dominant creeping wave launched at <j> = 90°. 
Much the same remarks apply to the comparison of the plots in Figure 3 of the approximate and 
exact z component of the TE NU current for oblique incidence (0s = 30°). 

In Figure 4 we have plotted the amplitude of the approximate TM NU current, 

KTM,NU(aifaz)z obtained from (48) and (49) for normal incidence, along with the amplitude 
of the exact current. Here there is no discontinuity at the shadow boundary because the TM 
PO current is zero in the illuminated region at the shadow boundary. The approximate cur- 
rent closely matches the exact current everywhere. No ripple behavior is observed here for the 
exact current because the creeping waves attenuate much more rapidly for TM than for TE 

illumination. 
Next we consider the parabolic cylinder with focal length h. The currents are given in 

terms of the parabolic cylindrical coordinates (£,/?, z) discussed in [17, ch. 7]. The surface of 
the scattering cylinder is given by r) = ^ = V2h. The derivations of the Fock currents are 
straightforward but somewhat lengthy. Expressions given in [17, ch. 7] are used, as well as the 
formula pn = (£2 + ^)

3/2
/T?I for the radius of curvature of a parabolic cylinder in the plane 

normal to the z-axis. We give only the results here. For illumination by the TE plane wave given 
by (1) and (2) with 0 < ft < TT, we obtain from (11) the Fock approximation for the NU current 

11 
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Figure 4: Amplitude of K™'NU(a, <j>,z) for a circular cylinder, ka = 60, <j>{ = 180°, 0* = 90°. 

in the illuminated region 

K^tf.^z) £ sin 6' + z cos 0 

—ikzcosß'  Pi 

i£cos<j)1 + 771 sin<^ 

(e+^2)l/2 
-tfc/i sin 0' (cos <f>{ *   ^ +2 sin <f>{ -£- ) 

(Msin^1/37?lC°S^"^Sin^ ,   £>77lCotf".     (50) 

For the shadow region, (21) yields 

KTJ5(£, ??i, z) «  £ sin Ö*' + z cos 9 
ikhsm$' i=('»r1(-f+>/^+^oot(*</2))-^rV«2+''i] ifcz cos S1 

•5 

1/4 

(Ä:A8inö*y/3ln(i7r1(-e + >/? + ^cot^)]-^^  (^T^rfJ      '    ^^cot^    (51) 

It can be convenient to replace the variable £ which ranges from —oo to +oo with a generalized 
angle variable (j>g (not to be confused with the polar angle <j>) defined by cf>g = tan-1 (£/??!) (or £ = 
771 tan <j>g) which ranges from — ir/2 to it/2 with the shadow boundary given by 4>g,sB = T/2 — 4>%. 
In terms of <f>g (50) and (51) become 

KTE,NU((j)g, kh, z) «  £ sin 0' + z cos 02| cos <^,|(sin <^ + cos <f? tan <^a) 

.e-ifcfesine'(cos0'(tan^-l)+2sm^tan^) e~ikz cotO* Q [(^ sin fl')*/3 (COS <^' - SU1 f tan <^)| , 

<t>g > x/2 - <?     (52) 

and 

KTE(<f>g,kh,z)tt  ßsinö'+ZCOSÖ'l    e^sin9'{ln[(-tan0s+|cos^|   i) cot(^/2)]-tan^|cos0s|   1} 
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—ikz cos 9l 

(kh sin 6lj     In  (— tan <f>g + | cos <j>g \ l j cot 0* 
COS   (f)g 11/2 

•\/sin ^' 

<t>g<ir/2-ft.    (53) 

For illumination by the TM plane wave given by (25) and (26), in the illuminated region we 

obtain from (35) or (36) 

K TM,NU (£,riuz)faiYo 
TJ-L -ikhsm8i(cos<t>i$-^L+2sm<t>i-^) 

_ — ikzcos9' 
... F (kh sin 0{)1/3 rji1 (77! cos ft - £ sin ft) 

£ > rji cot ft 
(kh cos py/3 

while in the shadow region we obtain from (42) 

ikhsme* [ln(7,f1(-{+>/42+»J?oot(0i/2))-ft1-V€a+i7f]     -ikzcosS' 

3/4 

(54) 

KTM(Z,m,z)*iYoe 

f (JbÄsinö*)1/3ln U_1(-£ + ^2 + »/? cot ft m 
y/sl^W(khsm9iy/3 \C2 + vi) 

In terms of the generalized angle variable cj>g, these expressions are respectively 

KjM'NU((i>g,kh,z) « ^yo|cos^|e-^^e'[coS^(tan2-l)+2sin0'tan^] ^ikzcosB* 

,    £< 77! cot ft.     (55) 

F (fc/i sin 6l)     (cos ^! — sin ft tan ^3) 

(khsmpy'3 <f>g > TT/2 - f (56) 

and 

K™(6     kh   z) ft iY   g^sin^-^^-taiK^+lcos^l   ^cot^'^-tancjSjIcos^gi   :} 

/ \(kh sin ö!')1/3 In [(- tan </>g + | cos ^l"1) cot ft] 
,— ifczcosfl' 

^sin ft (kh sin 0*')1/3 
^ < TT/2 - ^-     (57) 

In Figure 5 we show plots of the approximate TE NU current K^ ' (<j>g, kh, z) for a parabolic 
cylinder with kh = 60, obtained from (52) and (53) with ft = 30° and Q{ = 90° (normal 
incidence). Also plotted is the exact current obtained from [17, Eq.(7.47)] using expansions 
given in [18] and [19]. The approximation, while not quite as good as for the circular cylinder, 

is still very close. 
In Figure 6 we show a comparison of the z component of the approximate TE NU current 

for the same parabolic cylinder with ft = 30° and 6Z = 30° (oblique incidence), and the exact 
current obtained from [17, Eq.(7.47)] together with [13], [18], and [19]. Again the approximation 
is quite good throughout the range. 

Plots of the approximate TM NU current K™>NU(<j)g,kh,z) obtained from (56) and (57) for 
normal incidence and of the corresponding exact current obtained from [17, Eq.(7.12)] and [18] 
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Figure 6: Amplitude of K^E^NU{4>g, kh, z) for a parabolic cylinder, kh = 60, ft = 30°, 6{ = 30°. 
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Figure 7: Amplitude of K™*™(*„ kh, z) for a parabolic cylinder, kh = 60, tf = 30°, 6i = 90°. 

are displayed in Figure 7. Here the approximation, while acceptable, differs somewhat from the 
exact current especially in the shadow region, primarily because the value of the TM current 
at the shadow boundary <f>g = 60° is significantly less than the exact value. The reason for 
this discrepancy is that the Fock current approximation is derived under the assumption that 
the derivative of the radius of curvature at the shadow boundary is equal to zero, a condition 
satisfied by the circular cylinder but not by the parabolic cylinder except when the shadow 
boundary is at the vertex of the parabolic cylinder. The discrepancy between the exact and 
approximate values at the shadow boundary of the parabolic cylinder is present in Figures 5 and 

6 as well, but to a lesser degree. 

3    Integrating the Fock Currents to Obtain ILDC's 

We will now show how the ILDC's corresponding to the Fock currents presented in Section 2 
can be obtained efficiently. The ILDC's for the shadow boundary of a convex cylinder represent 
the fields radiated by the nonuniform Fock currents on that cylinder. Specifically, the far field 
radiated by a strip of thickness dz\ which is described by the curve C on the cylinder, is given 

by 

dENU{r) r_oo dz'ike1 '.kr 

Airr 
fl f e-iki-rc(s) [K

NC7
(ö% <j>{, s) - r f • KNU(6\ <f>\ sj\ ds, (58) 

where f is the direction to the far-field observation point, rc(s) is the parametric representation 
of C and KNU is the nonuniform Fock current. In the illuminated region, the curve C is normal 
to the shadow boundary. In the shadow region, C is the geodesic whose angle with the axial 

direction is 6\ as shown in Figure 1. 
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In general it is not possible to evaluate the integral (58) in closed form. However, as we 
will now demonstrate, an accurate and rapidly calculable approximation to this integral can be 
obtained. 

3.1     Quadratic Polynomial Approximations of the Amplitude and 
Phase of the ILDC Radiation Integral 

Begin by considering one of the components of the electric field dE in (58) and write this com- 
ponent as 

dE(r) = r A{s)e-iP^ds, (59) 
Jsa 

where the amplitude A(s) and the phase P(s) are functions of the angles of incidence and 
observation. The amplitude and phase functions are determined from the nonuniform current 
and the far-field Green's function occurring in (58). For convenience, we allow the amplitude 
A(s) to be complex. Moreover, the expressions in Section 2 for the Fock currents and the 
factor e-i

kr*c(s) determine the unwrapped phase of the integrand, so that the function P(s) 
is continuous except possibly at the shadow boundary. Thus, the phase function P(s) is not 
restricted to a finite interval of length 2w. 

We can divide the integration in (59) into subintervals and have 

r A(s)e-iP^ds = £ P+1 A(s)e-iP^ds (60) 

where s1 = sa, sn+1 = s&, and Sj < Sj+i. The form of the functions A(s) and P(s) leads one to 
assume that these functions can be accurately approximated by quadratic polynomials of s in 
each of the intervals Sj < s < sJ+1 when these intervals are chosen appropriately. Hence, 

P+1 A(s)e-iP^ds ~  r+1(co5
2 + clS + ^e'^+^+^ds (61) 

J Sj Jsj 

where c0, c1? c2, c3, c4, and c5 are constants independent of 5. 
These constants will be determined such that the quadratic polynomials fit A and P at the 

endpoints Sj and sJ+1 and at the midpoint Sj+1/2 = (SJ + 6J+1)/2: 

A(s) = c0s
2 + cjs + c2,     for s = Sj, s = sj+1/2, s = sj+1, (62) 

which gives 

r  -or,       ■  , ^A(*j+i) ~ M*j)  ,    sj+1A(sj+l) - SjA(Sj)          A(sj+1/2) 
c0 - Z{s3+1 + Sj)—— — h 4 A- —, 

[Sj+l ~ Sj)3 isi+l ~ Sj)3 (sj+1 - Sj)2 
(63) 

A(sj+l) - AUj)        . 

■Sj+1 — Sj 
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Figure 8: Circular cylinder illuminated by a TE plane wave 

c2 = *i+iA(*i)-*JAfo+0 + CoSjSj+1. (65) 
si+i "~ sj 

Similarly, 
P(s) = c3s

2 + c4s + c5,     for s = Sj, s = sj+1/2, s = sj+i (66) 

and we find that c3, c4, and c5 are given by (63), (64), and (65), respectively, with. A replaced by 
P. These expressions for the constants c0, cl5 c2, c3, c4, and c5 are well behaved for all functions 
A and P that are continuous in the interval Sj < s < sj+1. In principle we could let P(s) be 
continuous for all 5 except at the shadow boundary. However, in practical calculations we permit 
P(s) to have discontinuities that are multiples of 27r at the points Sj. 

In the appendix we have shown how the integral on the right side of (61) can be evaluated in 
closed form in terms of the Fresnel function. Thus the ILDC's are expressed as a finite summation 
involving the Fresnel function and the values of the amplitude and the unwrapped phase of the 

integrand in (58) evaluated at the points Sj. 

3.2    Numerical Verification of the Quadratic Approximations 

We will now use a numerical example to verify the quadratic approximation of the phase and 
amplitude in (61). We consider the far field radiated by the NU current on the circular cylinder 
shown in Figure 8. The incident field is a plane TE wave with ff* = eikx, and only the NU 
current in the angular region 0 < <j> < r will be taken into account. The magnetic far field for 
this NU current can be written as H?u'TE(r) = FNU'TE{<t>)eikr/v^, where the far-field pattern 

is given by 
  (67) jrNU,TE^=  P A(s)e-iP^ds, 

JSa 
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Figure 9: Amplitude of the exact nonuniform TE current on circular cylinder for ka = 60. 

with sa = 0, Sfc = 7T, 

and 

A(s) = 
fca rNU,TE 

'8TT 
1/^*001 cos(<£-5), (68) 

P(s) = &a cos(<^ - s) - Fh<ise(K%u>TE(S)) (69) 

where Phase(ü^ ' (s)) is continuous (i.e., noi modulo 2r) apart from the discontinuity at the 
shadow boundary. 

The amplitude and unwrapped phase of NU current are shown in Figure 9 and 10, respectively, 
for ka = 60. Notice that both the unwrapped phase and the amplitude of the NU current have 
discontinuities at the shadow boundary, and that the unwrapped phase is almost linear on the 
shadow side. 

Figures 11-14 show the exact values and the quadratic approximations of A(s) and P(s) for 
(j> = 0° and <f> = 90°. The number of segments n in (60) is 6 and Sj = TT(J — l)/6, so the 
shadow region 0 < s < TT/2, as well as the illuminated region 7r/2 < s < IT, are divided into 
three subregions. Thus, the length of the subintervals is 5A. To better illustrate the accuracy 
of the quadratic phase approximation, we have introduced discontinuities in the phase at the 
endpoints Sj. We see that the quadratic phase approximation is excellent for both these angles 
of observation, but that the quadratic amplitude approximation deviates somewhat from the 
exact amplitude for <j> = 0°. 

The quadratic approximations can be improved by using unequal spacing with a greater 
density of points taken in the region of s that contributes most strongly to the far field at <f>. 
As an example, this is done in Figures 15 and 16 for <f> = 0° where the endpoints are given by 
si = 0, 52 = 60°, s3 = 80°, 54 = 90°, 55 = 105°, 56 = 135°, and s7 = 180°. The quadratic 
amplitude approximation is clearly better in Figure 15 than in Figure 11 with equal spacing. 
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Figure 10: Phase of the exact nonuniform TE current on circular cylinder for ka = 60. 

-0.5 

CO 

Figure 11: Exact values and quadratic approximation of A(s) for n = 6, (j) - 0°, and ka 
The endpoints are Sj = 7r(j - l)/6. 

= 60. 
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Figure 12: Exact values and quadratic approximation of P(s) for n = 6, <f> = 0°  and ka - 60 
The endpoints are Sj = ir(j - l)/6. ' ~   U- 

Figure 13: Exact values and quadratic approximation of A(») forn = 6, <t> = 90°  and ka - 
The endpoints are s,- = *■(; -1)/6. ' ~ 60. 
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Figure 14: Exact values and quadratic approximation of P(s) for n = 6, <f> = 90°, and ka = 60. 
The endpoints are Sj — ir(j — l)/6. 
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V • 
Figure 15: Exact values and quadratic approximation of A(s) for n = 6, <f> = 0°, and ka = 60. 
The endpoints are sx = 0, s2 = 60°, s3 = 80°, s4 = 90°, s5 = 105°, s6 = 135°, and s7 = 180°. 
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Figure 16: Exact values and quadratic approximation of P(s) for n - 6, <f> = 0°, and ka - 60. 
The endpoints are sx = 0, s2 = 60°, s3 = 80°, s4 = 90°, s5 = 105°, s6 = 135°, and s7 = 180°. 
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Figure 17: Exact and approximate NU TE far-field pattern for ka = 60 and n = 4, n = 6, and 
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Incident Field 

Figure 19: Three dimensional scatterer illuminated by a plane wave. 

4    The Use of the ILDC's for a 3D Scatterer 

In this section we show how the ILDC's for a convex cylinder are applied to calculate the scattered 
far field of a 3D scatterer. In applications the PO field will generally be known, and what is 
desired is the scattered field due to the NU currents on the 3D scatterer in the vicinity of its 
shadow boundary. The total scattered field is then obtained by adding the NU scattered field to 
the PO field. Consider a 3D scatterer with a smoothly varying radius of curvature illuminated 
by a plane wave (see Figure 19). The illuminated and shadowed portions of the surface are 
separated by the shadow boundary curve on the surface of the scatterer. Consider a point P 
on the shadow boundary and generate a curve C on the surface of the scatterer through P 
motivated by the behavior of the currents on the surface. In the shadow region, C is the geodesic 
emanating from P in the direction of the illuminating plane wave - the curve followed by the 
currents - while in the illuminated region where the currents are determined locally, C is simply 
the intersection of the surface with the plane through P perpendicular to the shadow boundary. 
A 2D convex cylindrical (in general not circular-cylindrical) surface can then be generated by 
passing straight lines (generators) through each point on C parallel to the shadow boundary at 
P. Now generate a curve C through P on the cylindrical surface in the same way that C was 
generated on the surface of the 3D scatterer. Assume that the radius of curvature of the 3D 
scatterer is large in the direction parallel to the shadow boundary at P for points on the geodesic 
part of C, especially in the vicinity of P. Then the geodesic portion of C in the vicinity of P 
will be closely approximated by the geodesic portion of C (a generalized helical curve on the 
convex cylindrical surface making a constant angle with its generators), and the ILDC's of the 
cylindrical surface at P will be a good approximation to the fields radiated by the NU currents 
on a differential strip of the 3D scatterer's surface containing C. The procedure for obtaining the 
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ILDC's corresponding to the point P on the shadow boundary of the 3D scatterer is repeated for 
all points on the shadow boundary, and the ILDC's then integrated along the shadow boundary 
to obtain an approximation to the far field radiated by the NU currents on the 3D scatterer. 

It should be noted that a creeping wave geodesic on the surface of the actual scatterer will 
in general diverge from the corresponding helical creeping wave geodesic on the approximating 
convex cylinder surface as the distance from the launching shadow boundary point increases. 
However the exponential decay of the creeping waves (see Eqs. (24) and (45)) insures that the 
major contribution to the diffracted far field comes from the current on the portion of the geodesic 
close to the shadow boundary. Here the generalized helical geodesic can be expected to be a 
good approximation to the actual creeping wave geodesic, especially, if as assumed, the radius of 
curvature of the actual 3D scatterer is large in the direction parallel to the shadow boundary for 
points on the geodesic close to the launching shadow boundary point. An important consequence 
of this concentration of the creeping wave current in the vicinity of the shadow boundary is that 
the major ILDC contribution to the far field is in the forward direction, since the field in this 
region can be viewed as due to the shedding of the creeping waves along rays tangential to the 
scatterer at points close to the shadow boundary. 

4.1     Calculation of the Fields Scattered by a Sphere 

As an application of the NU ILDC's for the shadow boundary of the PEC circular cylinder, we 
calculated the far field of a PEC sphere illuminated by a plane wave by adding the integral of 
the ILDC for a cylinder to the PO field of the sphere, and compared the result to the exact 
scattered far field of the sphere as obtained from the Mie series solution. The sphere, of radius 
a, is assumed centered at the origin of a Cartesian coordinate system and illuminated by a plane 
wave propagating from above in the negative z-direction. The shadow boundary of the sphere is 
thus a circle of radius a in the z = 0 plane. A circular cylinder of radius a, enclosing the sphere, 
whose axis lies in the plane z = 0, will be tangent to the sphere along the circle of radius a, 
normal to the cylinder axis, with its center at the origin. Hence, a strip of the sphere's surface 
of constant equal width on either side of the meridian defined by (f> = constant coincides in the 
limit, as the width of the strip shrinks to zero, with an azimuthal differential strip of surface 
of the enclosing cylinder. As the cylinder is rotated around the z-axis the entire surface of the 
sphere is obtained. Thus the far field of the sphere can be obtained by adding the integral of the 
NU-current ILDC of the cylinder to the PO far field of the sphere, as the cylinder axis is rotated 
from <f> = 0 to <f> = 2TT. (It should be noted that an error is introduced in this approximation 
procedure by the fact that the differential strips of cylinder surface overlap in the vicinity of the 
poles of the sphere as the cylinder is rotated. This overlap is concentrated in the "polar" regions 
of the sphere, however, and if the radius of the sphere is large the NU currents will decay rapidly 
away from the shadow boundary so that the error attributable to the overlap of the differential 

strips can be expected to be small. 
In Figure 20 we show the scattered H-plane far field for a sphere of size ka = 60 illuminated 

by a plane wave obtained by the method of ILDC's, along with the exact field obtained from 
the Mie series.   The back and forward scatter directions correspond to 9 = 0° and 6 = 180°, 
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Figure 20: Amplitude of scattered H-plane far field of sphere, ka = 60, illuminated by a plane 
wave; 0° < 9 < 180°. 

respectively. The detail of Figure 20 for 130° < 9 < 180° is shown in Figure 21. It can be seen 
that a significant improvement upon the accuracy of the PO scattered field is obtained by adding 
the integral of the circular cylinder NU current ILDC to the PO field of the sphere. A similar 
result was obtained for the E-plane scattered far field pattern. Calculations for spheres smaller 
than ka = 60 have shown that the ILDC's significantly enhance the accuracy of the PO far field 
for spheres as small as ka = 20. 

5    Conclusions 

The nonuniform currents excited in the vicinity of the shadow boundary of a PEC object can 
contribute significantly to the total scattered far field of the object. The method of ILDC's is 
an important technique for calculating this NU far field which, added to the PO field, gives a 
considerably more accurate approximation to the total scattered far field than does the PO far 
field alone. The approach taken in this report to obtain ILDC's for the shadow boundary of 
a PEC 2D convex cylinder of general cross-section is to integrate the product of the free-space 
Green's function and the NU currents over a strip of surface of the 2D cylinder of differential 
width, transverse to the shadow boundary. Accurate and rapidly calculable Fock approximations 
to the NU currents are obtained and used. For circular and parabolic cylinders these NU current 
approximations are validated numerically. The integration required to obtain the ILDC's is itself 
performed rapidly by using quadratic polynomial approximations of both the amplitude and 
unwrapped phase of the integrand of the radiation integral, thereby enabling the integration to be 
performed in closed form involving Fresnel functions. Examples are given of the approximations 
of both the NU currents and the integrand of the radiation integral.  As an application of this 
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Figure 21: Amplitude of Scattered H-plane Far Field of Sphere, ka = 60, Illuminated by a Plane 
Wave; 130° < 9 < 180°. 

method of obtaining ILDC's for convex PEC cylinders, the ILDC's of a PEC circular cylinder are 
obtained and integrated over the shadow boundary of a PEC sphere illuminated by a plane wave 
to obtain the NU current far field. This field, added to the PO far field, is shown to considerably 
improve upon the accuracy of the PO approximation of the exact total scattered far field of the 

sphere. 
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Appendix 
Closed-Form Expressions for an Integral 

In this appendix we present closed-form expressions for the integral 

I(co,cuc2:c3,c4,c5,a,b) = f\c0s
2 + els + c2)e-i^J'+et-^^d8 

Ja 
(70) 

occurring in the expression (61). We assume that c0, cl5 and c2 are complex and that c3, c4, c5, 

a, and b are real. 

Case I: C3 > 0 
Integration by parts shows that 

/(co,Cl,C2,C3,C4,c5,a,6)   =    —\(b+—)e - (a + —J e 

where 

and 

,       J_ fc   _ <W±\  \e-i(c3b2+Cib+c5) _ e-i(c3a
2+Cia+cb) 

2c3 V l        C3 / L 

2ic3      2c3 4c? 

A = Jle-^^^» [ft(x0 - ft(xft)], 

Jo 

(71) 

(72) 

(73) 

(74) 

is a Fresnel function.  When |xtt| and \xh\ are large one can substitute the large-argument ap- 
proximation for the Fresnel function [20, pp. 301-302] 

1 — i 
n(x) ~ sign(x) —— + 

Si 

nx      n2x3      ir3x5 
+ 0(x-7) a-inx2/2 

\X\ —> OO (75) 

into (72) to get 

^          * \(l           i 
— +—3" \Xb         XXf 

3 
y/2-KCz 7T2xf 

e-i(c3b
2+ab+cs) _  (J_+     l -i(c3a.2+cia+cs) 

Xa TTXI TT2X5
a/ 

(76) 

Numerical calculations show that it is advantageous to use (76) when |xa| > 10 and \xb\ > 10. 
For |x0| < 10 or \xb\ < 10, the routine "frenel" of Numerical Recipes [21, pp. 248-250] can be 

used. 
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Case II: c3 < 0 

The integral can in this case be obtained from 

I(cQ, cuc2, c3, c4, c5,a, b) = [/(CQ, c[, c*2, -c3, -c4, -c5, a, &)]* (77) 

where * indicates complex conjugation. The integral on the right side of (77) can be computed 
by the formulas given in Case I above. 

Case III: 0 < |c3| < 1 

In this case it is advantageous to obtain I from 

dl 
I{cQ,cx,c2,cz,cA,c5,a,b) = I(c0,c1,c2,Q,c4,c5,a,b) + c3—(co,c1,c2,0,c4,c5,a, b) (78) 

OCz 

where 
dl_ 

dc3 

(co,c1,c2,0,c4,c5,a,6) = -i I  S
2
(CQS

2
 + cts + c2) e ^CiS+CbUs. 

Ja 
(79) 

The integral can be easily evaluated in closed form by integrating by parts or, more simply, by 
using a symbolic-integration computer program. 

Case IV: c3 = 0, c4 ^ 0 
A straightforward calculation shows that 

7(co,c1,c2,0,c4,c5,a,6) 
cob2 + c\b + c2      2c0b + C\     2c0 

ic4 

+ + 
ICi 

CQü
2
 + c\a + c2      2coa + C\      2CQ 

ic4 

+ 
r2 
C4 

+ 
ic\ 

-i(cib+cs) 

-i(c4<Z+C5) (80) 

Case V: c3 = 0, c4 = 0 
A straightforward calculation shows that 

"I 
/(co,c1,c2,0,0,c5,a,6) 3c0(6

3 - a3) + -Cl(62 - a2) + c2{b - a) -JCS (81) 

Equation (66) implies that the quantities e-i('3°-2+w+<*) and e-
i(^+^b+ei)i occurring in many 

of the expressions of this section, simply equal e~lP^ and e~lP(b\ respectively. 
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